本文共 1777 字,大约阅读时间需要 5 分钟。
题目描述
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则之后不能再次进入这个格子。 例如 a b c e s f c s a d e e 这样的3 X 4 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。class Solution: """ 判断迷宫/棋盘内是否有解的一个方法是回溯法。 当位于坐标(i, j)的时候,如果当前位置有效,则往所有可能的方向都走一步,否则回退到上一步 回溯一般可以基于递归或栈来实现。 以递归为例,若当前位置合法(未被剪枝去掉),则从当前位置出发,继续探索可能的位置,否则回退到 上一个位置 """ def hasPath(self, matrix, path): def helper(path_, row, col): """ 由(row, col)出发,探索所有可能的位置(递), 当发现有解或需要剪枝的时候就返回上一步(归) :param path_: 剩余待查找的路径 :param row: 当前所在的行 :param col:当前所在的列 :return: 是否有解 """ if not path_: return True if (row >= rows or row < 0 or col >= cols or col < 0 or matrix[row][col] != path_[0]): return False temp = matrix[row][col] # 记录当前位置的值,以便回溯的时候还原 matrix[row][col] = '#' # 标记为已走过 # 探索左右可能的位置(子节点) res = (helper(path_[1:], row, col + 1) or helper(path_[1:], row, col - 1) or helper(path_[1:], row + 1, col) or helper(path_[1:], row - 1, col)) matrix[row][col] = temp # 回溯时还原前面的标记,因为回溯后这个点相当于没走过 return res if not path: return True if not matrix: return False rows, cols = len(matrix), len(matrix[0]) for i in range(rows): for j in range(cols): # 这里可以先判断是否符合起点再进行递归也可以直接递归,但是先判断可以减少开销 if matrix[i][j] == path[0]: if helper(path, i, j): return True return False
转载于:https://blog.51cto.com/jayce1111/2380542